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Generalized dipolar modes of a Stockmayer fluid in high-order approximations
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Generalized dipolar mode spectra of a Stockmayer fluid are evaluated over a wide scale of wavelengths up
to a five-order approximation. The wave-vector- and frequency-dependent dielectric permittivity and dipole-
moment time autocorrelation functions are calculated on the basis of analytical expressions using the dipolar
modes. The obtained results are compared with those performed in lower-order approximations and with
molecular dynamics data. It is shown that the five-variable description quantitatively reproduces the entire
frequency dependence of the dielectric constant at arbitrary wave numbers. A relationship of the proposed
theory with existing approaches is established.
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[. INTRODUCTION on translational and orientational positions of molecules, are
considered as basic dynamical quantifif These quanti-
Dielectric relaxation in polar fluids was the subject of ties satisfy modified equations which take into account pro-
many investigations in theorjl—11], computer simulation cesses with short and intermediate time scales as well. The
[12-28, and pure experimern29—-33. Despite such inten- microscopic operator of dipole density is obtained by aver-
sive studies, there is a lack of agreement between predicteafjing the number density over orientations of the molecules.
and experimental results. Moreover, some key problems stilinh such a way, the dynamical polarization in a dense dipolar
remain unsolved, even in the simplest case when the fluid ifuid can be investigated, provided reasonable forms of the
treated as a system of point dipoles. dissipative kernels are available. However, due to the com-
The calculation of dielectric quantities for dipolar systemsplexities of the hydrodynamic equations, explicit results can
by computer simulation is still considered a major challengebe derived if various mechanisms of dielectric relaxation are
This is given that very long trajectories are required to obtairincluded separately from each other. As a consequence, these
reliable statistical accuracy, and because long-range contriesults can be applicable only in specific regions of wave
butions of the dipolar interaction must be taken into accountectors and frequencig$§].
within a finite-size sample to determine the dielectric con- In an alternative schem], the polarization vector and
stant unambiguously. The first correct calculation of dielec-ts next two higher-order components are assumed to be a set
tric properties for a Stockmayer fluid model was done byof slow variables. In this so-called three-variable theory the
Pollock and co-workergl2—14 using the Ewald summation orientational relaxation, inertial effects, and correlations due
technique. Neumann and co-workéis8,19 proposed a self-  to the dipole-dipole interactions are involved in the consid-
consistent computer adapted theory suitable for the investeration. As a result, the dipole-moment autocorrelation func-
gation of dielectric properties using reaction field geometrytion is represented on time as the sum of three exponential
It has been shown that adequate values for the bulk dielectrigrms which are associated with the corresponding mecha-
constant can be reproduced from computer experiments of sisms of dielectric relaxation. The frequency-dependent di-
few hundred particles. Recentf28], the computer adapted electric constant is described in terms of the third-order con-
theory has been developed to evaluate time-dependent dipai@ued fraction. Time constants, appearing in the dissipative
fluctuations at arbitrary wave numbers. As a result, the dikernel are considered, as a rule, adjustable parameters. It is
electric function of a Stockmayer fluid has been calculatedvorth underlining that previous applications of this theory
by molecular dynamicéMD) simulations in a wide range of were restricted to the long-wavelength regime didly,20.
wave vectors and frequencies. Recently, the concept of generalized collective modes,
Among various theoretical schemes able to describe thased earlier for the investigation of nonequilibrium proper-
processes of dielectric relaxation in dipolar fluids, we canties of simple fluid§35—37, was applied to dipolar systems,
point out two approaches, namely, the dipole-density formaland actual computations were performed in the whole wave-
ism of Madden and Kivelsof] and the extended hydrody- vector range up to a three-mode descrip{id8]. In particu-
namic description, developed by Bagchi and Char{@a lar, it was concluded that the three-variable prescription is
The usual Navier-Stokes hydrodynamij@gl], being valid in  sufficient to predict quantitatively the frequency dependence
the infinite-wavelength limit and at great times, cannot beof dielectric quantities for Stockmayer fluids. But such a
used at molecular length scales. In the extended hydrodyconclusion was based on calculations carried out with the
namic description, the microscopic operators of particlehelp of a fitting procedure, because higher-order static corre-
numbers, spatial and angular momenta densities, dependitation functions were not known. For this reason, it is not so
obvious that the described above pattern indeed takes place.
In the present paper, the generalized dipolar mode spectra
* Author to whom correspondence should be addressed. Electroniaf a Stockmayer fluid are evaluated over a wide scale of
address: nep@icmp.lviv.ua wavelengths up to a five-order description, without involving
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any adjustable parameters. In the framework of the proposegthere M (k)=M(k), My(k)=(1—-P)LM(K), ...,
approach, the frequency dependence of dielectric quantitiemnd ~ Mg(k)=(1—Ps_;)LS M (k) and P,...

is determined by extended continued fractions to which the=34_( ... Mg(—K)}{Ma(K)-Mg(—K)) " *Mg(k)  de-
Markovian approximation is applied. As a result, using thenotes the Mori-like projection operatf9]. The orthogonal-
dipolar modes, it is shown that the three-variable theory reized variables(4) constitute the matrix of time correlation
produces qualitatively the wave-vector- and frequency{unctions(TCF'’s)

dependent dielectric constant and only beginning from the

five-order description can one talk about quantitatively re- (M (k)- e“/\/lﬁ(—k»
producing over the whole range of varying wave numbers Fap(k,t)= [2INW?

and frequencies. Moreover, we demonstrate that within the

same approximation all time constants of memory kernelgyhich is diagonal in the static limit—0, i.e., f,z(k)
can be expressed in terms of static correlation functions, sa 5 sfwa(K), Where( ) denotes the equilibrium a\,gfage
a aa 1 )

that dynamic properties of the system are obtained usingesignates the permanent magnitude of the molecule’s dipole

=F(kt) (5

static fluctuations exclusively. moment, and the multiplief2} is included in the case of
transverse fluctuations only.
[l. GENERAL THEORETICAL FRAMEWORK According to construction of the orthogonalized set, the

functionsf (k) can be found in terms of static correlation

functions (SCF'9 corresponding to the initial set3),
We shall deal with a dipolar fluid oN identical mol- gaﬁ(k)=(L“‘1M(k)-Lﬁ‘lM(—k)>/{2}Nu2, by the itera-

A. Basic definitions

ecules enclosed in volumé. Let tions
S u ek 5 Ky (K)
M(k,t)= D, u(t)e kit (1) — _Y 2enVSgAR
i=1 ! gaﬁ(k) gaﬁ(k) '}/Zl fyy(k) ’
be the primary dynamical variable, whose correlation func- a1 g2
tion is of direct interest. The collective variall®) presents, £ (K)=0,a(K) — 2 £ay(K) (6)
in fact, the spatial Fourier transforfyM(r,t)e *"dr of 7=1 Tyy(K)

the microscopic operator of dipole-moment dendityr t) with f,,(K)=gy4(k) and a=2,3 S and B=1,2 o
11 — Y11 =40, ... =1,z ...

=212 3;(1) 8[r —ri(1) ], wherer;(t) andu(t) denote the po- —1, where it is understood that the sum on the right-hand
siti_lc_)rr:_ ar(ljd dipo_le rl’r10m_erk1)t|, resp_e(f:_tivel)k/], of moIe_cUh&ftime , sidé of the first equality of Eq(6) must be omitted a3
t. This dynamical variable satisfies the equation of motion_ _/ a-1 . _ 2
dM (k,t)/dt=LM(k,t), where thé’aizﬁig;“ﬁ(k) (L7 M(k)- Mp(~K))/{2INU" denotes
y matrix. The orthogonalized procedure can be
P P simp!ified significantly by taking into account tha}t the basic
Vi— + W, X U, _) function g.(k,t)Efll(k,t) is even with respect to time. Then
or; Ui one obtains thag,s(k) [as well as¢,z(k)] are equal to
N zero if a+ B is an odd number, whereas nonzero elements
B (i%.iJrEu.X% i) (2 can be expressed via their diagonal ones gig(K)
Z\moarg avi 37T aup ow, =(—1)le~Al2g (k), wherey=(a+ B)/2.

The processes of dynamical polarization in the system can
is the Liouville operator of the systemp;; denotes the inter- be described by TCF'¢5). In particular, the longitudinal
molecular potentialy; andw; are the translational and rota- ¢, (k,w) and transverser(k,o) components of the wave-
tional velocities, respectively, of moleculsvith massmand  vector- and frequency-dependent dielectric permittivity are
moment of inertial. The formal solution of the equation of expressed via the first elemegtk,t) of the SXS square
motion isM(k,t)=e-'M(k,0)=e-'M (k). matrix F(k,t), as[28]

Let us consider an extended set of variables

L=>,

=1

8|_(k,w)—1 L . L
IM(K),LM(K),L2M(K), . .. LS~ IM(K)} Sy k) 9 (WT1eg ke,
={L* M(k)}, a=1,...8S ©)
er(kw)—1 .
which includes, besides the basic dynamical quamifk), 9y =9 (-legi(ke), @

its time derivatives at=0 up to (S—1)th order. It is neces-
sary to note that due to isotropy of the system, longitudinalvherey=47Nu?/9VkgT andkg andT are the Boltzmann’s
and transverse fluctuations are completely independent @fonstant and temperature of the system, respectively,
one another and can be studied separately. Thereforé3)set g(k,w)=fﬁg(k,t)e‘i‘”tdtzﬁiw(g(k,t)) and £;,, designates

is formed by either longitudinalM‘(k), or transverse, the Laplace transform.

MT(k), components oM (k). For more convenience of fur-
ther presentation, we transform the extended set to the or-

. B. Extended continued fractions
thogonalized form

Using the memory function formalism, the matrix equa-
M(K)={M,(k),My(k),M3(k), ... Mgk)}, (4  tion for equilibrium TCF’'s can be written as followW85]:
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J P In our case, due to the orthogonality of $4}, the matrix of
S Pk D= QK F(k,) + JO I'(k, 7)F(k,t—7)d7=0. memory kernelsI'(k,7) has one nonzero element only,
®) namely,I's{k,7)=T"g(k, 1), where

((1=Pg) Mg, 1(k)-exd (1—Pg)L7](1—Ps) Mg 1(—k))

feflen= M) Me(—K)) ' ©
|
and wherel is the unit matrix and=(k) =lim,_ oF(k,t) denotes
. the matrix of SCF's. Equatiofl2) is now solved analyti-
Q(k) = (M(k)-LM™(K)) cally, and the result for first element B{k, w) can be cast as
(M(K)- M (k) the Sth-order continued fraction
o -1 0 0 o0 ... g(k)
K,w)= 13
Q0 0 -1 0 o0 ... gk = 0,(K) (19
lw+ Ok
_ w+ k)

et Tak o)

In view of Eq. (6), more explicit expressions for elements
(112) of the frequency matrix ab<5 are

(10
is the frequency matrix with the elements Q,(k)= %
) (k): <Ma(k)Ma(_k)> _ faa(k) 2
T M 10 M 2(ZR) T 1o a0 (k) = 2090~ G2(k)
(1) 9(k)gz(k)
In the Laplace representation, the integrodifferential equa- 4
tion (8) converts into the algebraic one a(k)[g2(k)ge(k) —gi(k)]
Qy4(k)= 2 )
[iwl —Q(k)+T'(k,w)]F(k,0) =F(k), (12) 92(K)[9(K)ga(k) —g3(k) ]
|
(k) = 200L0(08a(K195(K) + 20:(K)8a(K)96(K) — G5()g(k) ~ 9K g5 (k) ~ 93(K)]
) [9(K)ga(k) — g5(K) I[92(K)gs(K) — gi(K)] ’
|
where The solution(13) leads to exact results at arbitrary ordgr
provided the corresponding memory functiokig are pre-
~ (L°M(k)-L*M(=k)) cisely determined. However, such a prescription is rather a
92s(k) = [2INW? (19 formal one, because the exact calculat{ienof the dissipa-

tive kernel constitutes, in general, an unresolvable problem.
is the static Kirkwood factor of the h order & We shall now consider a question of how to perform this
=0,1,...5—1), andgo(k)=g(K). calculation approximately.

It can be seen easily from E(L3) that the same function Let
0(k,w) is obtained within the $+ 1)th order continued frac-
tion as well if the memory functions obey the recurrent rela- o
tion s J tlfaa(kat)|dt
0
(k) =min——,
Qs11(K) a=1 f ”
= > faa(K 1) dt
dew)iw+ryﬂkwf (16) 0| (k1)
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% only the frequency dependenceldf(k,w) can be neglected,

tf ok, t)|dt but also values of (k) will begin to depend almost not at

7s+1(K)= max ——— (17) all on the ordelS of the description. Then we can write that
a= s+1f If,.(k,t)|dt Fs+_1(k)~FS(I_<) at sufficiently great values 0%, and the_

basic correlation tim€20) can be excluded from our consid-
eration. Taking into account the explicit relatiot&l), and

be characteristic intervals of decaying in time of the autocorietting T';(k)=T,(k), Tx(k)=T5(K),..., r2n71(k)

relation functions from th&-order set and all the rest func- =, (k), an(k) I'5n41(K), wheren=23, ..., for the

tions from higher-order sets, angi(k)=r7s,1(k)/7s(k) be  correlation timerS) (k) in the sth apprOX|mat|on we obtain

their ratio. We assume in advance that there exist dynamical) iy = 1/./0.(k). 7@k [Q5(K)/Q (K and
processes in the system, corresponding to essentially differ- cor(K) = 1N (K), 7ei(k) = VA2 (K)/ 2o (k). .

ent scales of time, and, therefore, beginning from a some n-1 Q

numberS, the ratio ys must become sufficiently small, i.e., 72n- 1>(|<)_ H 2

ys(k)<1 at arbitrary wave vectors. This assumption is jus- VQ, 151 YOy Q2(n ez

tified provided that thé&-order set(4) forms an almost com-

plgte slow set of dynamical varigbleg. It i§ obvious that in (20} VQ 3 \/Qz(n n+1Q22n— )+3

this case the memory kern@), which is built on projected Teor (K)= Q, 4 Qan 122 (22
higher-order variables, decays in time faster than TGb)s

le., Finally, substituting value§22) into expressions$21) for

" . memory functions within the same order of the approxima-
J I'(k,7)F(k,t— r)dr%f I'(k,7)drF(k,t)=T'(k)F(k,t). tion, we obtain
0 0

(18 n—i+
Fon-1(K)=02; H %

Thus, on characteristic time scales of varying TCF’s, the
dissipative kernel can be considered a8 function in time

space, I'g(k,7)~T'g(k)d(7), with the weight I'g(k) Qo(n- h+3
=I"g(k,w=0). In the frequency representation, relatia8) an( k)”\/_ H Qoinni1 (23)
stays

_ In such a way, in view of Eqs(13), (14), and (23), the
I's(k,w)~T's(k), (19) frequency dependend&) of the dielectric constant can be

that represents the well-known Markovian approxmatlonreproduced using static correlation functiof®5) exclu-

[3,6]. sively.
The memory kernel'g(k) can be found in terms of ele- . )
ments (11) of the frequency matrix and the basic wave- C. Generalized collective modes
vector-dependent correlation time In Sec. Il B it was shown how to obtain analytic results
for dynamical quantities in the frequency representation.
7oo(K) = lim gk,w) _[=g(k) dt (200 However, in the Markovian approximation, Eg8) for
o w0 9(K) o 9(k) TCF's can be solved analytically in time space as well. This

equation can now be written as
putting w— 0 in theS-order continued fractiofil3). Then at

different orders of the description we obtain the following Y __ M
result: Ty(K)= 1reo(K), Ta(k)=7e(K)Qs(k), and @ b (kD==TUOF(kY), 24
=23,...)
where the (generalized evolution operatoiT (k)
1 Qoin-1y+1(K) =—Q(k)+I'(k) is determined by the explicit expressions
Ion-1(k)= okl K (10), (12), and (21) [or (23)] for (k) and I'(k), respec-
Teol K) i=1 2(nfl)( ) . M o1 . ; .
tively, andF" indicates the matri¥ of TCF's, calculated in
(K) the Markovian approximation.
- Qan-n-+2(K) Let X;.(k) be an eigenvector associated with an eigen-
T n(K) = 7o K) Q2 (k)H (21) et Xg 9 9
2n ol Q0L 0 valueZ (k) of the T(k) matrix, i.e.,
It is worth mentioning that the frequency independence of S
the memory kernel in th&-order description does not con- Z Top(K) X5, (K)=Z,(K)X,,(K), (25

cern the memory functions of lower orders, which depend on -
frequency, according to the recurrent relatids).

Now we consider a more general formulation of the Mar-
kovian approximation in higher-order descriptions. As far as'
the ratioyg(k) is small enough at a given value 8f it will
also remain small at higher orders, or will even decrease with M _ ap —-Z (Kt
increasingS. If this statement indeed takes place, then not Fap(k.t) )Zl Qy (ke (26)

wherea,y=1, ... SandT,; designate the elements of
Then the solutlon to differential equatid@4) is of the form
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i.e., each element of theM matrix can be expressed as the sents the well-known Kirkwood factag(k) which is con-
sum of S Lorentzians which are connected with the general-nected with the pair distribution functidi 9] and, therefore,
ized collective mode< (k). The ampIitudesQiﬁ are de- can be calculated using one or another apprdaéhl 5,14
fined uniquely in terms of eigenvectors, using the initial con-of the equilibrium statistical mechanics. The Kirkwood fac-
dition lim,_oFM(k,t)=F(k). The result is tor of second orderg=1) has an analytical representation
[38], g5 T(k)=(kgT/3)[(2/3)+ (k?/m)]. The higher-order
B 1 functions 6=2-4) are related to the four-particle distribu-
Qy (k)=|:21 Xay(K) Xy (k) f1 5(K), (27) tion function, and it is not a simple matter to predict them
theoretically. Usually, they are considered as adjustable pa-
where the matrix< ! is the inverse oK={X,}. The com- rameters. It is obvious, however, that in such a way these

ponenthﬁ(k) describes a partial contribution of the mode functions cannot be determined uniquely. Because of this, to

Z.(k) into the time correlation functiof, s(k,t). Applying avoid any additional uncertainties in the calculation of col-

the Laplace transform to E26) yields the following result lective modes, and to observe the convergence of continued
in frequency space: fractions in a pure form, we shall evaluaig,(k) using the

MD method. Details of our computer experiment are similar

S

S Q“A(k) to those reported earli¢28].
fZ"B(k,w)z 2 ﬁ (28 We note that it is necessary to distinguish correlation
=1 lo+Z,(K) functions, obtained directly in simulations for finite samples

G4(k) from infinite-system functiongg(k). As was shown
reviously, additional transformations to obtaik) from
(k) are necessary, namehg(k)=[1/G(k)+D(k)] %,
where D(k) takes into account details of simulatiof28].
Moreover, the lowest-order time correlation functions, re-
lated to infinite and finite systems, obey the equality

which in the particular case= =1 can be considered as
an alternative representation of extended continued fractio
(13) for g(k,w)=f;4(k,w) in the Markovian approximation
(18). Result(26), obtained in thes-mode description, allows
one to evaluate th&x S matrix of longitudinal and trans-
verse TCF's(5).

From Egs.(8) and (24) it can be shown easily that 1 1
Jodt FM(k,t)=fgdt F(k,t) or, in other words, — = — +D(k).
im,,_oF¥(k,w)~lim,_oF(k.w) and, therefore, the Mar- 90 ~1@Le(86D) GO =lwli,(GlkL) 9

kovian approximation leads directly to exact results in the

low-frequency limit. Moreover, from the initial condition Performing the Taylor expansion of E(R9) over inverse
FM(k)=F(k) [i.e., f¥ (K)=fqa(k), @=0,1,...S—1], it  frequencies atv—, it can been shown easily that higher-
follows that[37], if the S-mode approximation is used, time order static correlation functions of the infinite system can be
derivatives of the genuing(k,t) and approximated™ (k,t) defined as follows:

functions coincide between themselvestatO up to the

2(S—1)th order. For this reason, it is evident that in the g2(k)=G(k),

hypothetical limitS—o, the Markovian approximation ex-

actly reproduces the original time correlation functigk,t) 9a(k)=Gy4(k) +D(K)G3(K),

over the whole region of time and wave number for arbitrary (30)

dipolar systems.
96(K) = Ge(k) +D(K)Ga(K)[Ga(k) +9a(K) ],

I1l. INVESTIGATION OF A STOCKMAYER FLUID
9gs(k) = Gg(k) + D (K){G4(k)ga(k)
In order to verify the proposed theoretical scheme, we

considered the Stockmayer model of polar systems using the +Ga(K)[Ge(K) +ge(K) ]}

intermolecular  potential ¢ij= (PLJ(rij)_l'épdd(rij Ui ), The finite-system function&(k), G,(k), andG4(k) were
where ¢, (1) = 4Ll (o15/1) ™= (o1,/1ij)"] denotes t5he calculated directly in the simulations by definiti¢hs), us-
Lennard-Jones (LJ) part, @gq= —3(U;-ri;) (U;-ri;)/rj; ing Eqg. (1) and the explicit expressions

+(ui-u]-)/ri3j describes the dipole-dipole interactions, and

rij=ri—r;. Our numerical calculations were performed at a N _

reduced density’* =o7;N/V=0.822, a mean temperature LM(K)= 2 [wixu—iu(k-v;)]e ',

T* =kgT/e;=1.147, a dipole momenti*2=u?/(e jo?)) =t

=3.0, and a moment of inerti&* = J/(mo?;)=0.025. The (31)
maximal order of extended continued fractions has been re- N

stricted t0S=5. L2M(k)=i2l W X U+ (Wi - U)Wy — w2u) — Uy (k-v;) 2

According to the basic resulid3), (14), (21), and (22),
the knowledge of static correlation functioms(k) [EQ.
(19)] is necessary as=0-4 to investigate the frequency
dependence of the dielectric permittivity and evaluate the . . . .
generalized dipolar mode spectra within up to the five-ordefor higher-order dynamical variables, wherg=Lv
description. There are several possibilities to define the statie — (1/m) =], dei; /ori=(Lm)f; and w=Lw;=—(1/
correlation functions. The lowest-order functios=0) pre- J)E}\'(j#)uixﬁgoij /ou;=(11)K; denote the translational and

_i[2wi><ui(|<.\,i)+ui(k_\',i)]}e—ik-ri
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FIG. 2. Transverséa) and longitudinal(b) components of the

)

_ib;& 104 EL s=2 correlation time for the Stockmayer fluid. The results in one-, two-,
T three-, and four-order approximations are plotted by long-dashed,
4 long-short-dashed, short-dashed, and solid curves, respectively. The
M exact values are presented as circles.

10 ¢

T verse fluctuations, respectively. As we can see from the fig-
LJ_//L Ss=0 ures, the four-order approximation already reproduces values

s s - of 7.,(k) not only qualitatively but even quantitatively over
0 2 4 6 8 10 12 14 16 18 the whole region of wave numbers.

kay, The generalized dipolar mode spectra in two-, three-,
four-, and five-order descriptions are shown in Fig. 3. In the
case of transverse fluctuatiofisubsets(a) and (b) of the
figure], we can clearly identify the diffusive modB (k)

FIG. 1. TransverseT) and longitudinal L) components of the
s-order static Kirkwood factorss=0-4) for a Stockmayer fluid at

* * A
n*=0.822 andT™ =1.147. The MD data for the finite system are which is well separated from all the rest of modes over a

shown as dashed curves. The infinite-system Kirkwood factors are . - : .
) ! wide wave-vector range. This mode converges rapidly to its
plotted by solid curves. Note that the transverse functions, corre-

sponding to finite and infinite systems, are practically indistinguish-genume. V_alue with an increasing Orde.r Of_ the approximation,
able, excepting the case=0. so that it is already reproduced quantitatively at small wave

numbers within the two-order description. As far as the five-

order description is used, we can talk about the quantitative
reproducing at intermediate and great wave vectors as well.
The appearance of th2, (k) mode is caused by the diffusive

rotational accelerations, respectively. In view of very com-
plicated structures fot.*M (k) and L*M(k), the highest-
order static correlation function&g(k) and Gg(k) were
evaluated numerically in terms of twofold and fourfold time
derivatives of the functionG,(k,t) at t=0, i.e., Gg(k)

= — 3°G4(k,t)/9t?|,—o and Gg(k) = 3*G4(k,t)/dt*|;~o. The
evaluation ofGg(k) andGg(k) was carried out with the help
of a special procedure to reduce numerical errors to a mini-
mum.

The longitudinal g5((k) and transverse,.(k) compo-
nents of the infinite-system functiorng,,(k) [as well as
G5.'(k)] obtained in such a way are displayed in Fig. 1 at
s=0-4 in units of 7, 2%, where 7,=oy(M/e )2 The
componentng'ST(k), as autocorrelation static functions, are
positively defined at arbitrary wave numbers. In the limit of
great wave vectors they can be calculated analytically,
namely, lim_..g5." (k) =(—1)%3?°gg(k,t)/t?%;_.o, where
ga(k,t) = 2exp(—ak’t?) denotes the limiting Gaussian transi-
tion of g~ T(k,t) atk—o, anda=kgT/2m [38]. In particu-
lar, g~T(K)— 3, gz T(K)—5ak?, g5 T(—4a%k*, g5 (K)
—40a°k®, and gy "(k)—560a%k®. It is interesting to point
out that higher-order functions differ from lower-order ones
considerably. This indicates existing dynamical processes in

Z3 (k) T,

ko,

13
PN
)
£

Zy(k) 7o
::'5(") To

©

= o
0 2 4 6 8 10 12 14 18 18 0 2 4 6 8 10 12 14 16 18

the system, which correspond to essentially different scales kay, ko,
of time.

FIG. 3. Generalized dipolar mode spectra of the Stockmayer

The result of Fig. 1 allows us immediately to check OUr ig: transversd(a) and (b)] and longitudinal(c) and (d)] modes

assumption about t_he p055|b_|llty to express the correlatiof}, ¢, - [(8 and(c)] and five-[(b) and (d)] order descriptions. The
time in terms of static correlation fun.ctlon.s. The correspondy,re giffusive modes and real and imaginary parts of propagating
ing calculations(22) of the correlation tlmeTEE)r(k) Per-  modes are marked by the symbds P, andW, respectively. For
formed in different approximationssE&1—4) as well as ex-  the purpose of comparison the results in two- and three-mode ap-
act valueg20) obtained by the MD method are presented inproaches are shown i) and(c) and (b) and (d) by the thinnest
Figs. 2a) and 2b) for the cases of longitudinal and trans- curves.
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mechanism of dielectric relaxation in polar systems, and onlghe values 27.8,*, 33.0r,*, 35.5r,*, and 31.%," ob-
this mechanism is considered in the well-known Debyetained by us aB= 2, 3, 4, and 5, respectively. The second-
theory. Neglecting the dipole-dipole interactions, as doneary oscillation process is reproduced by the next two
originally by Debye, it can been found that in the infinite- complex-conjugated modéx, (k) =iW,(k) at S=4. Finally,
wavelength limit limy_oD,(k)=2Dg, whereDg is the ro- in the five-order description, the pure diffusive mddeg(k)
tational diffusion coefficient. Applying the extended hydro- appears additionally.
dynamic approach, Bagchi and Chandra improved this result The dipolarons are expected to occur for systems with
and obtained (k) = (2D g+ D+k?)[1+ (N/V)c(k)], where large permittivities where a rapid reorientation of dipoles
D+ is the translational diffusion coefficient, an¢k) denotes takes place. They were found for the first time by Pollock
a component of the spherical harmonic expansion of the twoand Alder[14], investigating Stockmayer fluids in a some-
particle direct correlation functiof6]. The last result is valid what different thermodynamic point and with smaller values
not only for dilute systems but also for dense gases and ligef the particle’s dipole moment than in the present work.
uids; however, it can be used at small wave vectors excluAnalysis of the dipolaron oscillations in Rdfl4] was lim-
sively. Our scheme provides the possibility to defing k) ited, in fact, by small values of the wave vector. The dipo-
in terms of the Kirkwood factor and its higher-order compo-laron frequency was estimated as that providing the maxi-
nents at arbitrary values of the wave number. mum of the imaginary part of &{ (k, ). Computations have

It is worth remarking that the diffusive mode, as the modeshown, however, that such an estimation gives correct values
with the lowest real part, makes the main contribution to theof the dipolaron frequency for small wave numbers only
TCFs and dielectric quantities in an almost whole domain of 28].
k space, especially at small wave vectors. That is why the In our approach, the inequalitié®, (k) sW;(k), P,(k),
single-relaxation-time approximation for dipole-momentandD4(k) can be considered as a condition of existing the
fluctuations,~e~P1(M t which is used in the Debye theory, dipolaron oscillations. This condition is satisfied as far as
can be applied here. This approximation works well in thek* =ko | ;=<4. With increasing wave-vector values the diffu-
overdamped limit of great timesand small frequencies, sive processes begin to dominate, especialk*at 7, where
where the inertial motions of the liquid molecules are notD4(k) is much less than all the other modes. This feature is
important. To describe the region of intermediate valuess of visible in all the orders of the approximations as well. For
and o properly, it is necessary to consider higher-orderexample, in the four-order description the propagating modes
modes. The next two propagating modeg(k) +iW,(k) P,(k) =iW, (k) are separated into two pure diffusive modes
arise additionally, beginning from the three-order approachD,(k) and D5(k) within a small region neak* ~7, where
The three- and higher-order descriptions explicitly includethe longitudinal componeng“(k) of the Kirkwood factor
the free-motion effects in terms @f,(k), and correlations has the sharp maximuisee Fig. 1
due to interactions via the torque-torq¢e; ;K;-K;) and In view of the behavior of dipolar modes, the whole re-
force-force (Z; ;fi-f;) (at k#0) fluctuations in terms of gion of wave vectors can be split into several characteristic
g4(k) [see Eq.(31)]. Within the four-order approximation intervals. In the first one the lowest-lying dipolar modes are
the secondary diffusive modB;(k) appears at smak. It  well separated from the rest of others, and this separation is
separates into two new propagating modgk) +iW;(k) observed as long ds" <2 (the so-called extended hydrody-
when the order of the approximation is increased to fivenamic regimg In this interval the Debye-like theory can be
whereas the previous two propagating modes are moderatehpplied to transverse dipole-moment fluctuations, whereas
corrected. The four- and five-mode descriptions considethe longitudinal component of the dielectric permittivity can
higher-order kinetic processes which are important at verype predicted by two complex-conjugated dipolaron modes.
small times(very great frequenci¢sand great wave-vector In the second range of intermediate wave numbersk®?2
values. The transverse propagating modes describe an osci#12, all the modes are mixed between themselves in a very
lation behavior of time polarization fluctuations. However, it complicated mannefespecially in the case of longitudinal
is hard to observe these oscillations because they damp sifiuctuations. To describe the dynamical behavior of dielec-
nificantly during their time periods, i.eB,(k)~W,(k) and tric quantities in this range, it is necessary to involve addi-
P53 (k) ~Wj5(k). tional higher-order modes, except for the subintervalké

For the longitudinal fluctuationfsubsets(c) and (d) of =8, where the longitudinal diffusive mode dominates over
Fig. 3], the pattern is quite different. Here we can easilyall the rest of modes, similar to the behavior of transverse
distinguish two propagating mode®,(k) +iW,(k). Con- modes in the extended hydrodynamic regime. Finally, in the
trary to the case of transverse fluctuations, these modes esge-called free-motion regimé&* <12, all the modes tend to
hibit a quasiparticle feature at not very great wave numbersheir own linear asymptotes to reproduce the Gaussian time
whereP,(k)<W, (k). They should be associated with dipo- shapegg(k,t) of dipole-moment fluctuations.
larons[14] (analogous to the well-known plasmons in Cou- Examples of the normalized, time correlation functions
lomb systems whereW; (k) andP (k) define the frequency @, (k,t)=g""(k,t)/g"T(k), obtained in two-, three-, and
and damping of the dipolaron excitations, respectively. Adive-mode descriptions, are presented and compared with the
one can see from the figures, the dipolaron mode has alreadyD data[28] in Fig. 4. As we can see from the figure, the
been predicted within the two-order description which in-transverse componen®{(k,t) exhibits an almost pure
cludes the correct inertial short time behavior of polarizationdamped feature over a wide range of wave numbers. In the
fluctuations. If dipole-dipole interactions are neglected, thecase of longitudinal fluctuations this is valid for intermediate
dipolaron frequency can be defined approximatg8y as and great wave-vector values only. At small wave vectors,
Iim,HOWl(k)=47rNu2/VJ~35.27;l that is very close to the longitudinal dipole-moment fluctuations are described by
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FIG. 4. The normalized time autocorrelation functions of the 4,
dipole-moment fluctuations for the Stockmayer fluid at some fixed
values of wave number, whekg,,= 27/ 3V=0.927k ;. The MD
data for longitudinal and transverse components are shown as
circles and squares. The results of two-, three-, and five-mode de ~ 04
scriptions are plotted by the corresponding long-dashed, short -os
dashed, and solid curves, respectively. 1
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strong dipolaron oscillations with a slight damping. Such a
behavior of®_(k,t) is completely in line with the predic- Lo (@)
tions of the generalized dipolar modes approach. The trans  °®|x=gk....
verse TCF's are reproduced satisfactorily even within the3 o¢
three-mode description. The longitudinal oscillations are de-& o4
scribed in this case as well, but only qualitatively. At the © o=
same time, the approximated and genuine TCF’s begin to be 4,
indistinguishable when the order of the description is in- _,,
creased to five. oot ot e
A pattern similar to that presented for TCF’s is observed
for the wave-vector- and frequency-dependent dielectric per- FIG. 5. The frequency dependence of the longitudinal dielectric
mittivity &, 1(k,w) =&/ 1(k,0)—ie] 1(K,). Our calcula- Permittivity for the Stockmayer fluid at infinit(@ and (b)] and
tions, carried out in one-, two-, three- and five-order approxifinite [(¢)—(h)] wavelengths. The MD data are shown by circles.
mations for the longitudinat, (k, ) and transverse(k,w) Thg rgsults obtained within one-, two-, three-, and five-mode dg-
components are shown in Figs. 5 and 6, respectively, in comrscriptions are p_Iotted by long-short-, long-, short-dashed, and solid
parison with the MD data of Ref28]. We note that in the ~CUrves, respectively.
infinite-wavelength limit lim_oe 1(k,w)=¢(w). It can
easily be seen that within the Debye-like theo8~1) the
dielectric permittivity can be well reproduced in the hydro- mode method. The proposed approach can be considered as
dynamic limit (low frequencies and wave numbrVith 4, extension of the three-variable theory of Madden and Kiv-
increasing wave-vector and frequency values this theorgison 3] o arbitrary numbers of dynamical variables. Our
fails, especially in the case of longitudinal fluctuations. In thescheme for the computation of dipolar modes is presented in

three-.mpde a_pproxm'au.on we can talk about a qualltat_lvea form that is very convenient to actual applications. In par-
description. Finally, within the five-order approach the entirege, ., 5 necessary input quantities are, in fact, static Kirk-
frequency dependence of the dielectric permittivity is de ’ i !

scribed quantitatively at arbitrary wave vectdtae devia ‘wood factors of different orders. The static factors can be
> “"  determined by either equilibrium theories or direct computer
tions from MD data do not exceed a few pergerithis y a P

| that the fi bl titut | simulations. This has allowed us both to avoid any fitting
merely means that the Tive variables constitute an amo.sﬁrocedures and to evaluate the generalized dipolar-mode
complete S?t of slow quantities, and the Markovian approXisyactra of a Stockmayer fluid over the whole scale of wave-
mation begins o be almost exact. _There_fore, t_he ex“?”d ngths up to the five-order description. It has been shown on
continued fraction§13) converge rapidly with an increasing th

der of th imai d the hvbothesis of bb e basis of direct calculations that the five-variable theory
order ot the approximation, and the NypothesiS of an abbre; a5 one to define the dielectric permittivity of a dipolar
viated description is in an excellent accord.

fluid quantitatively at arbitrary wave-vector and frequency
values.
In view of the importance of the problem of dynamical
It has been established that dielectric relaxation in a dipopolarization in polar fluids, we would also like to discuss
lar fluid can be successfully studied within the generalizedriefly the question of how the theoretical scheme we present

&'(k,w)

IV. CONCLUDING REMARKS
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namic properties, it is rather sophisticated and impractical in
applications. The main results are yet to be obtained.

A somewhat different approach for describing the gener-
alized hydrodynamics of dipolar systems was recently pro-
posed in Ref[40]. The main idea of this approach consists
of the following. When the vectdvl (k) of the dipole density
is included into the consideration as an orientational variable,
it is no longer necessary to deal with the orientational depen-
denceQ(r,®)={n,P,e,L} of hydrodynamic variables. Then
the basic set can be cast in the usual molecular Qxtk)
=WQ(r,0))ge *Tdr={n(k), P(k), e(k),L(k)}, where
nk)=x=N e 'k, P(k)==N mvie k", e(k)
=3 (e)ee ", andL (k) ==L  Jwie” M. The advan-
tage of such a representation lies in the evident simplification
of the corresponding hydrodynamic equations. Moreover,
owing to the conservation laws of the total number of par-
ticles, momenta and energy, the basic @¢k) can be con-
sidered as a set of slow variables. For instance, time deriva-
tives of n(k), P(k), ande(k) vanish, wherk—0. Finally,
for isotropic and spatially homogeneous systems, the dipole
density M(k) does not correlate at equilibrium with basic
hydrodynamic quantities in the static limit, i.e.,
(M(k)-Q(k))=0.

For this reason, the dipole-density and hydrodynamic
fluctuations can be considered separately from each other, as
has been done in the present paper, when investigating
dipole-moment fluctuations. We call the generalized collec-
tive modes related to these fluctuations dipolar modes, in
order to distinguish them from the hydrodynamic modes
concerning fluctuations of hydrodynamic quantities. At the
same time, the generalized hydrodynamic modes of a dipolar
wT, wT, system can be studied within the same scheme as in the case
of simple fluids[35—37. It is also worth remarking that cor-
felations between the dipole-moment density and hydrody-
namic quantities are not completely independent. Being ab-
sent at the basic level, however, they appear at higher orders
of the description. This leads to additional non-Markovian
effects when working within the dipole-density formalism.
n_I\Ievertheless, these effects are taken into account in an ef-
. fective way, including, besides the basis quanhityk), its
- N ) ¥1igher—order component8) as well. The hydrodynamic cor-
n(r,0)=2i_,6(r—r;) 6(0—©;), spatial momentum den- yejations are included in the same way too. For example, the
sity P(r,0)=3=N,mv;6(r—r;) 8(®—®;), and angular mo- fluctuations ofLM(k) [see Eq.(31)] can be expressed in
mentum densityl (r,®)=3N,Jw;8(r—r;)5(@—0,) are terms of the correlations of spatial and angular momenta
involved within the widely cited approach of Bagchi and den_sities. Therefore, within.the e>_<tended d_ipole—density for-
Chandra[6]. In this theory, fluctuations of the total energy _mal:fsr_nl, the_ ﬁrohcedsse(zjs of d!electrlc re_Iaxan_on r?reh conndected

TR _ <N _ _ implicitly with hydrodynamic properties via higher-order
density e(r,®)==i-,&0(r—r)o(@-0;), where e i Kirkwood factors. The investigation of generalized hy-
drodynamic modes of a Stockmayer fluid, as well as an ap-
plication of the proposed theory to more complicated inter-
ction site models of polar fluids, will be presented in a
eparate publication.
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eelk,w)
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FIG. 6. The frequency dependence of the transverse dielectri
permittivity for the Stockmayer fluid at finite wavelengths. The no-
tations are the same as for Fig. 5.

= 3(mv7+Iw+ 3N, @), are not taken into account due
to the complexities of the hydrodynamic equations. The vec
tor ©; characterizes orientations of moleculeand, in the
case of rigid nonpolarizable molecules, it can be associate,
with the unit vector directed along the particle’s dipole mo-
ment, i.e.,®;=u;/u. Then the dipole-moment fluctuations
can be reproduced on the basis of number-density correla-
tions, using the relatioM (r,t)=u(® n(r,0,t))e, where

the averaging is performed over orientations. Despite the fact One of us(l.P.) would like to acknowledge the financial
that such an approach allows one, in principle, to describsupport of the President of Ukraine. .M. also thanks the
the processes of dielectric relaxation in a dipolar fluid andOsterreichische Fonds zur feterung der wissenschaftlicher
connect them directly with thermodynamic and hydrody-Forschung(Project P12422TPH
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