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Generalized dipolar modes of a Stockmayer fluid in high-order approximations
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Generalized dipolar mode spectra of a Stockmayer fluid are evaluated over a wide scale of wavelengths up
to a five-order approximation. The wave-vector- and frequency-dependent dielectric permittivity and dipole-
moment time autocorrelation functions are calculated on the basis of analytical expressions using the dipolar
modes. The obtained results are compared with those performed in lower-order approximations and with
molecular dynamics data. It is shown that the five-variable description quantitatively reproduces the entire
frequency dependence of the dielectric constant at arbitrary wave numbers. A relationship of the proposed
theory with existing approaches is established.
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I. INTRODUCTION

Dielectric relaxation in polar fluids was the subject
many investigations in theory@1–11#, computer simulation
@12–28#, and pure experiment@29–33#. Despite such inten-
sive studies, there is a lack of agreement between predi
and experimental results. Moreover, some key problems
remain unsolved, even in the simplest case when the flu
treated as a system of point dipoles.

The calculation of dielectric quantities for dipolar system
by computer simulation is still considered a major challen
This is given that very long trajectories are required to obt
reliable statistical accuracy, and because long-range co
butions of the dipolar interaction must be taken into acco
within a finite-size sample to determine the dielectric co
stant unambiguously. The first correct calculation of diel
tric properties for a Stockmayer fluid model was done
Pollock and co-workers@12–14# using the Ewald summation
technique. Neumann and co-workers@18,19# proposed a self-
consistent computer adapted theory suitable for the inve
gation of dielectric properties using reaction field geome
It has been shown that adequate values for the bulk diele
constant can be reproduced from computer experiments
few hundred particles. Recently@28#, the computer adapte
theory has been developed to evaluate time-dependent d
fluctuations at arbitrary wave numbers. As a result, the
electric function of a Stockmayer fluid has been calcula
by molecular dynamics~MD! simulations in a wide range o
wave vectors and frequencies.

Among various theoretical schemes able to describe
processes of dielectric relaxation in dipolar fluids, we c
point out two approaches, namely, the dipole-density form
ism of Madden and Kivelson@3# and the extended hydrody
namic description, developed by Bagchi and Chandra@6#.
The usual Navier-Stokes hydrodynamics@34#, being valid in
the infinite-wavelength limit and at great times, cannot
used at molecular length scales. In the extended hydro
namic description, the microscopic operators of parti
numbers, spatial and angular momenta densities, depen
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on translational and orientational positions of molecules,
considered as basic dynamical quantities@5#. These quanti-
ties satisfy modified equations which take into account p
cesses with short and intermediate time scales as well.
microscopic operator of dipole density is obtained by av
aging the number density over orientations of the molecu
In such a way, the dynamical polarization in a dense dipo
fluid can be investigated, provided reasonable forms of
dissipative kernels are available. However, due to the co
plexities of the hydrodynamic equations, explicit results c
be derived if various mechanisms of dielectric relaxation
included separately from each other. As a consequence, t
results can be applicable only in specific regions of wa
vectors and frequencies@6#.

In an alternative scheme@3#, the polarization vector and
its next two higher-order components are assumed to be
of slow variables. In this so-called three-variable theory
orientational relaxation, inertial effects, and correlations d
to the dipole-dipole interactions are involved in the cons
eration. As a result, the dipole-moment autocorrelation fu
tion is represented on time as the sum of three expone
terms which are associated with the corresponding mec
nisms of dielectric relaxation. The frequency-dependent
electric constant is described in terms of the third-order c
tinued fraction. Time constants, appearing in the dissipa
kernel are considered, as a rule, adjustable parameters.
worth underlining that previous applications of this theo
were restricted to the long-wavelength regime only@17,20#.

Recently, the concept of generalized collective mod
used earlier for the investigation of nonequilibrium prope
ties of simple fluids@35–37#, was applied to dipolar systems
and actual computations were performed in the whole wa
vector range up to a three-mode description@38#. In particu-
lar, it was concluded that the three-variable prescription
sufficient to predict quantitatively the frequency depende
of dielectric quantities for Stockmayer fluids. But such
conclusion was based on calculations carried out with
help of a fitting procedure, because higher-order static co
lation functions were not known. For this reason, it is not
obvious that the described above pattern indeed takes p

In the present paper, the generalized dipolar mode spe
of a Stockmayer fluid are evaluated over a wide scale
wavelengths up to a five-order description, without involvi
ic
6667 © 1998 The American Physical Society
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any adjustable parameters. In the framework of the propo
approach, the frequency dependence of dielectric quant
is determined by extended continued fractions to which
Markovian approximation is applied. As a result, using t
dipolar modes, it is shown that the three-variable theory
produces qualitatively the wave-vector- and frequen
dependent dielectric constant and only beginning from
five-order description can one talk about quantitatively
producing over the whole range of varying wave numb
and frequencies. Moreover, we demonstrate that within
same approximation all time constants of memory kern
can be expressed in terms of static correlation functions
that dynamic properties of the system are obtained us
static fluctuations exclusively.

II. GENERAL THEORETICAL FRAMEWORK

A. Basic definitions

We shall deal with a dipolar fluid ofN identical mol-
ecules enclosed in volumeV. Let

M ~k,t !5(
i 51

N

ui~ t !e2 ik–r i ~ t ! ~1!

be the primary dynamical variable, whose correlation fu
tion is of direct interest. The collective variable~1! presents,
in fact, the spatial Fourier transform*VM̂ (r ,t)e2 ik–rdr of
the microscopic operator of dipole-moment densityM̂ (r ,t)
5( i 51

N ui(t)d@r2r i(t)#, wherer i(t) andui(t) denote the po-
sition and dipole moment, respectively, of moleculei at time
t. This dynamical variable satisfies the equation of mot
dM (k,t)/dt5LM (k,t), where

L5(
i 51

N S vi–
]

]r i
1wi3ui –

]

]ui
D

2(
iÞ j

N S 1

m

]w i j

]r i
–

]

]vi
1

1

J
ui3

]w i j

]ui
–

]

]wi
D ~2!

is the Liouville operator of the system,w i j denotes the inter-
molecular potential,vi andwi are the translational and rota
tional velocities, respectively, of moleculei with massm and
moment of inertiaJ. The formal solution of the equation o
motion isM (k,t)5eLtM (k,0)[eLtM (k).

Let us consider an extended set of variables

$M ~k!,LM ~k!,L2M ~k!, . . . ,LS21M ~k!%

[$La21M ~k!%, a51, . . . ,S ~3!

which includes, besides the basic dynamical quantityM (k),
its time derivatives att50 up to (S21)th order. It is neces-
sary to note that due to isotropy of the system, longitudi
and transverse fluctuations are completely independen
one another and can be studied separately. Therefore, se~3!
is formed by either longitudinal,ML(k), or transverse,
MT(k), components ofM (k). For more convenience of fur
ther presentation, we transform the extended set to the
thogonalized form

M~k!5$M1~k!,M2~k!,M3~k!, . . . ,MS~k!%, ~4!
ed
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where M1(k)5M (k), M2(k)5(12P1)LM (k), . . . ,
and MS(k)5(12PS21)LS21M (k) and Pa . . .
5(b51

a ^ . . .Mb(2k)&^Mb(k)–Mb(2k)&21Mb(k) de-
notes the Mori-like projection operator@39#. The orthogonal-
ized variables~4! constitute the matrix of time correlatio
functions~TCF’s!

f ab~k,t !5
^Ma~k!– eLtMb~2k!&

$2%Nu2
[F~k,t ! ~5!

which is diagonal in the static limitt→0, i.e., f ab(k)
5dab f aa(k), where^ & denotes the equilibrium average,u
designates the permanent magnitude of the molecule’s di
moment, and the multiplier$2% is included in the case o
transverse fluctuations only.

According to construction of the orthogonalized set, t
functions f aa(k) can be found in terms of static correlatio
functions ~SCF’s! corresponding to the initial set~3!,
gab(k)5^La21M (k)–Lb21M (2k)&/$2%Nu2, by the itera-
tions

jab~k!5gab~k!2 (
g51

b21
jag~k!jbg~k!

f gg~k!
,

f aa~k!5gaa~k!2 (
g51

a21 jag
2 ~k!

f gg~k!
~6!

with f 11(k)5g11(k) and a52,3, . . . ,S and b51,2, . . . ,a
21, where it is understood that the sum on the right-ha
side of the first equality of Eq.~6! must be omitted atb
51, and jab(k)5^La21M (k)–Mb(2k)&/$2%Nu2 denotes
the auxiliary matrix. The orthogonalized procedure can
simplified significantly by taking into account that the bas
function g(k,t)[ f 11(k,t) is even with respect to time. The
one obtains thatgab(k) @as well asjab(k)# are equal to
zero if a1b is an odd number, whereas nonzero eleme
can be expressed via their diagonal ones asgab(k)
5(21)ua2bu/2ggg(k), whereg5(a1b)/2.

The processes of dynamical polarization in the system
be described by TCF’s~5!. In particular, the longitudinal
«L(k,v) and transverse«T(k,v) components of the wave
vector- and frequency-dependent dielectric permittivity a
expressed via the first elementg(k,t) of the S3S square
matrix F(k,t), as@28#

«L~k,v!21

9y«L~k,v!
5gL~k!2 ivgL~k,v!,

«T~k,v!21

9y
5gT~k!2 ivgT~k,v!, ~7!

wherey54pNu2/9VkBT andkB andT are the Boltzmann’s
constant and temperature of the system, respectiv
g(k,v)5*0

`g(k,t)e2 ivtdt[Liv„g(k,t)… andLiv designates
the Laplace transform.

B. Extended continued fractions

Using the memory function formalism, the matrix equ
tion for equilibrium TCF’s can be written as follows@35#:



y,
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]

]t
F~k,t !2V~k!F~k,t !1E

0

`

G~k,t!F~k,t2t!dt50.

~8!
ua

-
la
In our case, due to the orthogonality of set~4!, the matrix of
memory kernelsG(k,t) has one nonzero element onl
namely,GSS(k,t)[GS(k,t), where
GS~k,t!5
^~12PS!MS11~k!–exp@~12PS!Lt#~12PS!MS11~2k!&

^MS~k!–MS~2k!&
, ~9!
ts
and

V~k!5
^M~k!–LM1~k!&

^M~k!–M1~k!

5S 0 21 0 0 0 . . .

V2 0 21 0 0 . . .

0 V3 0 21 0 . . .

0 0 V4 0 21 . . .

0 0 0 V5 0 . . .

. . . . . . . . . . . . . . . . . .

D
~10!

is the frequency matrix with the elements

Va~k!5
^Ma~k!–Ma~2k!&

^Ma21~k!–Ma21~2k!&
[

f aa~k!

f a21 a21~k!
.

~11!

In the Laplace representation, the integrodifferential eq
tion ~8! converts into the algebraic one

@ ivI2V~k!1G~k,v!#F~k,v!5F~k!, ~12!
-

where I is the unit matrix andF(k)5 limt→0F(k,t) denotes
the matrix of SCF’s. Equation~12! is now solved analyti-
cally, and the result for first element ofF(k,v) can be cast as
the Sth-order continued fraction

g~k,v!5
g~k!

iv1
V2~k!

iv1
V3~k!

iv1•••

VS~k!

iv1GS~k,v!

. ~13!

In view of Eq. ~6!, more explicit expressions for elemen
~11! of the frequency matrix atS<5 are

V2~k!5
g2~k!

g~k!
,

V3~k!5
g~k!g4~k!2g2

2~k!

g~k!g2~k!
,

~14!

V4~k!5
g~k!@g2~k!g6~k!2g4

2~k!#

g2~k!@g~k!g4~k!2g2
2~k!#

,

V5~k!5
g2~k!@g~k!g4~k!g8~k!12g2~k!g4~k!g6~k!2g2

2~k!g8~k!2g~k!g6
2~k!2g4

3~k!#

@g~k!g4~k!2g2
2~k!#@g2~k!g6~k!2g4

2~k!#
,

r a

em.
is
where

g2s~k!5
^LsM ~k!–LsM ~2k!&

$2%Nu2
~15!

is the static Kirkwood factor of the 2sth order (s
50,1, . . . ,S21), andg0(k)[g(k).

It can be seen easily from Eq.~13! that the same function
g(k,v) is obtained within the (S11)th order continued frac
tion as well if the memory functions obey the recurrent re
tion

GS~k,v!5
VS11~k!

iv1GS11~k,v!
. ~16!
-

The solution~13! leads to exact results at arbitrary orderS,
provided the corresponding memory functionsGS are pre-
cisely determined. However, such a prescription is rathe
formal one, because the exact calculation~9! of the dissipa-
tive kernel constitutes, in general, an unresolvable probl
We shall now consider a question of how to perform th
calculation approximately.

Let

tS~k!5min
a51

S E
0

`

tu f aa~k,t !udt

E
0

`

u f aa~k,t !udt

,
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tS11~k!5 max
a5S11

` E
0

`

tu f aa~k,t !udt

E
0

`

u f aa~k,t !udt

~17!

be characteristic intervals of decaying in time of the autoc
relation functions from theS-order set and all the rest func
tions from higher-order sets, andgS(k)5tS11(k)/tS(k) be
their ratio. We assume in advance that there exist dynam
processes in the system, corresponding to essentially di
ent scales of time, and, therefore, beginning from a so
numberS, the ratiogS must become sufficiently small, i.e
gS(k)!1 at arbitrary wave vectors. This assumption is ju
tified provided that theS-order set~4! forms an almost com-
plete slow set of dynamical variables. It is obvious that
this case the memory kernel~9!, which is built on projected
higher-order variables, decays in time faster than TCF’s~5!,
i.e.,

E
0

`

G~k,t!F~k,t2t!dt'E
0

`

G~k,t!dtF~k,t ![G~k!F~k,t !.

~18!

Thus, on characteristic time scales of varying TCF’s,
dissipative kernel can be considered as ad function in time
space, GS(k,t)'GS(k)d(t), with the weight GS(k)
[GS(k,v50). In the frequency representation, relation~18!
stays

GS~k,v!'GS~k!, ~19!

that represents the well-known Markovian approximat
@3,6#.

The memory kernelGS(k) can be found in terms of ele
ments ~11! of the frequency matrix and the basic wav
vector-dependent correlation time

tcor~k!5 lim
v→0

g~k,v!

g~k!
5E

0

`g~k,t !

g~k!
dt, ~20!

puttingv→0 in theS-order continued fraction~13!. Then at
different orders of the description we obtain the followin
result: G1(k)51/tcor(k), G2(k)5tcor(k)V2(k), and (n
52,3, . . . )

G2n21~k!5
1

tcor~k!)l 51

n21
V2~n2 l !11~k!

V2~n2 l !~k!
,

G2n~k!5tcor~k!V2~k!)
l 51

n21
V2~n2 l !12~k!

V2~n2 l !11~k!
. ~21!

It is worth mentioning that the frequency independence
the memory kernel in theS-order description does not con
cern the memory functions of lower orders, which depend
frequency, according to the recurrent relation~16!.

Now we consider a more general formulation of the M
kovian approximation in higher-order descriptions. As far
the ratiogS(k) is small enough at a given value ofS, it will
also remain small at higher orders, or will even decrease w
increasingS. If this statement indeed takes place, then
r-

al
r-
e

-

e

f

n

-
s

th
t

only the frequency dependence ofGS(k,v) can be neglected
but also values ofGS(k) will begin to depend almost not a
all on the orderS of the description. Then we can write tha
GS11(k)'GS(k) at sufficiently great values ofS, and the
basic correlation time~20! can be excluded from our consid
eration. Taking into account the explicit relations~21!, and
letting G1(k)5G2(k), G2(k)5G3(k), . . . , G2n21(k)
5G2n(k), G2n(k)5G2n11(k), where n52,3, . . . , for the
correlation timetcor

(s)(k) in the sth approximation we obtain
tcor

(1)(k)51/AV2(k), tcor
(2)(k)5AV3(k)/V2(k), . . . , and

tcor
~2n21!~k!5

1

AV2
)
l 51

n21
V2~n2 l !11

AV2~n2 l !V2~n2 l !12

,

tcor
~2n!~k!5

AV3

V2
)
l 51

n21 AV2~n2 l !11V2~n2 l !13

V2~n2 l !12
. ~22!

Finally, substituting values~22! into expressions~21! for
memory functions within the same order of the approxim
tion, we obtain

G2n21~k!'AV2 )
l 51

n21 AV2~n2 l !12

V2~n2 l !
,

G2n~k!'AV3 )
l 51

n21 AV2~n2 l !13

V2~n2 l !11
. ~23!

In such a way, in view of Eqs.~13!, ~14!, and ~23!, the
frequency dependence~7! of the dielectric constant can b
reproduced using static correlation functions~15! exclu-
sively.

C. Generalized collective modes

In Sec. II B it was shown how to obtain analytic resu
for dynamical quantities in the frequency representati
However, in the Markovian approximation, Eq.~8! for
TCF’s can be solved analytically in time space as well. T
equation can now be written as

]

]t
FM~k,t !52T~k!FM~k,t !, ~24!

where the generalized evolution operatorT(k)
52V(k)1G(k) is determined by the explicit expression
~10!, ~11!, and ~21! @or ~23!# for V(k) and G(k), respec-
tively, andFM indicates the matrixF of TCF’s, calculated in
the Markovian approximation.

Let Xbg(k) be an eigenvector associated with an eige
valueZg(k) of the T(k) matrix, i.e.,

(
b51

S

Tab~k!Xbg~k!5Zg~k!Xag~k!, ~25!

wherea,g51, . . . ,S andTab designate the elements ofT.
Then the solution to differential equation~24! is of the form

f ab
M ~k,t !5 (

g51

S

Qg
ab~k!e2Zg~k!t, ~26!
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i.e., each element of theFM matrix can be expressed as th
sum ofS Lorentzians which are connected with the gener
ized collective modesZg(k). The amplitudesQg

ab are de-
fined uniquely in terms of eigenvectors, using the initial co
dition limt→0FM(k,t)5F(k). The result is

Qg
ab~k!5(

l 51

S

Xag~k!Xg l
21~k! f lb~k!, ~27!

where the matrixX21 is the inverse ofX[$Xab%. The com-
ponentQg

ab(k) describes a partial contribution of the mod
Zg(k) into the time correlation functionf ab(k,t). Applying
the Laplace transform to Eq.~26! yields the following result
in frequency space:

f ab
M ~k,v!5 (

g51

S Qg
ab~k!

iv1Zg~k!
, ~28!

which in the particular casea5b51 can be considered a
an alternative representation of extended continued fract
~13! for g(k,v)[ f 11(k,v) in the Markovian approximation
~18!. Result~26!, obtained in theS-mode description, allows
one to evaluate theS3S matrix of longitudinal and trans
verse TCF’s~5!.

From Eqs. ~8! and ~24! it can be shown easily tha
*0

`dt FM(k,t)5*0
`dt F(k,t) or, in other words,

limv→0FM(k,v)5 limv→0F(k,v) and, therefore, the Mar
kovian approximation leads directly to exact results in
low-frequency limit. Moreover, from the initial condition
FM(k)5F(k) @i.e., f aa

M (k)5 f aa(k), a50,1, . . . ,S21#, it
follows that@37#, if the S-mode approximation is used, tim
derivatives of the genuineg(k,t) and approximatedgM(k,t)
functions coincide between themselves att50 up to the
2(S21)th order. For this reason, it is evident that in t
hypothetical limitS→`, the Markovian approximation ex
actly reproduces the original time correlation functiong(k,t)
over the whole region of time and wave number for arbitra
dipolar systems.

III. INVESTIGATION OF A STOCKMAYER FLUID

In order to verify the proposed theoretical scheme,
considered the Stockmayer model of polar systems using
intermolecular potential w i j 5wLJ(r i j )1wdd(r i j ,ui ,uj ),
where wLJ(r i j )54eLJ@(sLJ /r i j )

122(sLJ /r i j )
6# denotes the

Lennard-Jones ~LJ! part, wdd523(ui–r i j )(uj–r i j )/r i j
5

1(ui–uj )/r i j
3 describes the dipole-dipole interactions, a

r i j 5r i2r j . Our numerical calculations were performed a
reduced densityn* 5sLJ

3 N/V50.822, a mean temperatur
T* 5kBT/eLJ51.147, a dipole momentu* 25u2/(eLJsLJ

3 )
53.0, and a moment of inertiaJ* 5J/(msLJ

2 )50.025. The
maximal order of extended continued fractions has been
stricted toS55.

According to the basic results~13!, ~14!, ~21!, and ~22!,
the knowledge of static correlation functionsg2s(k) @Eq.
~15!# is necessary ats50 –4 to investigate the frequenc
dependence of the dielectric permittivity and evaluate
generalized dipolar mode spectra within up to the five-or
description. There are several possibilities to define the s
correlation functions. The lowest-order function (s50) pre-
l-

-

ns

e

y

e
he

e-

e
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tic

sents the well-known Kirkwood factorg(k) which is con-
nected with the pair distribution function@19# and, therefore,
can be calculated using one or another approach@12,15,16#
of the equilibrium statistical mechanics. The Kirkwood fa
tor of second order (s51) has an analytical representatio
@38#, g2

L,T(k)5(kBT/3)@(2/J)1(k2/m)#. The higher-order
functions (s52 –4! are related to the four-particle distribu
tion function, and it is not a simple matter to predict the
theoretically. Usually, they are considered as adjustable
rameters. It is obvious, however, that in such a way th
functions cannot be determined uniquely. Because of this
avoid any additional uncertainties in the calculation of c
lective modes, and to observe the convergence of contin
fractions in a pure form, we shall evaluateg2s(k) using the
MD method. Details of our computer experiment are simi
to those reported earlier@28#.

We note that it is necessary to distinguish correlat
functions, obtained directly in simulations for finite sampl
Gs(k) from infinite-system functionsgs(k). As was shown
previously, additional transformations to obtaing(k) from
G(k) are necessary, namely,g(k)5@1/G(k)1D(k)#21,
whereD(k) takes into account details of simulations@28#.
Moreover, the lowest-order time correlation functions,
lated to infinite and finite systems, obey the equality

1

g~k!2 ivLiv„g~k,t !…
5

1

G~k!2 ivLiv„G~k,t !…
1D~k!.

~29!

Performing the Taylor expansion of Eq.~29! over inverse
frequencies atv→`, it can been shown easily that highe
order static correlation functions of the infinite system can
defined as follows:

g2~k!5G2~k!,

g4~k!5G4~k!1D~k!G2
2~k!,

~30!

g6~k!5G6~k!1D~k!G2~k!@G4~k!1g4~k!#,

g8~k!5G8~k!1D~k!$G4~k!g4~k!

1G2~k!@G6~k!1g6~k!#%.

The finite-system functionsG(k), G2(k), andG4(k) were
calculated directly in the simulations by definition~15!, us-
ing Eq. ~1! and the explicit expressions

LM ~k!5(
i 51

N

@wi3ui2 iui~k–vi !#e
2 ik–r i,

~31!

L2M ~k!5(
i 51

N

$ẇi3ui1„~wi–ui !wi2wi
2ui…2ui~k–vi !

2

2 i @2wi3ui~k–vi !1ui~k–v̇i !#%e
2 ik–r i

for higher-order dynamical variables, wherev̇i[Lvi

52 (1/m) ( j ( j Þ i )
N ]w i j /]r i[(1/m)f i and ẇi[Lwi52(1/

J)( j ( j Þ i )
N ui3]w i j /]ui[(1/J)K i denote the translational an
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rotational accelerations, respectively. In view of very co
plicated structures forL3M (k) and L4M (k), the highest-
order static correlation functionsG6(k) and G8(k) were
evaluated numerically in terms of twofold and fourfold tim
derivatives of the functionG4(k,t) at t50, i.e., G6(k)
52]2G4(k,t)/]t2u t50 and G8(k)5]4G4(k,t)/]t4u t50. The
evaluation ofG6(k) andG8(k) was carried out with the help
of a special procedure to reduce numerical errors to a m
mum.

The longitudinalg2s
L (k) and transverseg2s

T (k) compo-
nents of the infinite-system functionsg2s(k) @as well as
G2s

L,T(k)# obtained in such a way are displayed in Fig. 1
s50 –4 in units of ts

22s , where ts5sLJ(m/eLJ)
1/2. The

componentsg2s
L,T(k), as autocorrelation static functions, a

positively defined at arbitrary wave numbers. In the limit
great wave vectors they can be calculated analytica
namely, limk→`g2s

L,T(k)5(21)s]2sgG(k,t)/]t2su t→0, where
gG(k,t)5 1

3 exp(2ak2t2) denotes the limiting Gaussian trans
tion of gL,T(k,t) at k→`, anda5kBT/2m @38#. In particu-
lar, gL,T(k)→ 1

3, g2
L,T(k)→ 2

3 ak2, g4
L,T(k)→4a2k4, g6

L,T(k)
→40a3k6, and g8

L,T(k)→560a4k8. It is interesting to point
out that higher-order functions differ from lower-order on
considerably. This indicates existing dynamical processe
the system, which correspond to essentially different sc
of time.

The result of Fig. 1 allows us immediately to check o
assumption about the possibility to express the correla
time in terms of static correlation functions. The correspo
ing calculations~22! of the correlation timetcor

(s)(k) per-
formed in different approximations (s51 –4! as well as ex-
act values~20! obtained by the MD method are presented
Figs. 2~a! and 2~b! for the cases of longitudinal and tran

FIG. 1. Transverse (T) and longitudinal (L) components of the
s-order static Kirkwood factors (s50 –4! for a Stockmayer fluid at
n* 50.822 andT* 51.147. The MD data for the finite system a
shown as dashed curves. The infinite-system Kirkwood factors
plotted by solid curves. Note that the transverse functions, co
sponding to finite and infinite systems, are practically indistingui
able, excepting the cases50.
-

i-

t

f
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es
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n
-

verse fluctuations, respectively. As we can see from the
ures, the four-order approximation already reproduces va
of tcor(k) not only qualitatively but even quantitatively ove
the whole region of wave numbers.

The generalized dipolar mode spectra in two-, thre
four-, and five-order descriptions are shown in Fig. 3. In t
case of transverse fluctuations@subsets~a! and ~b! of the
figure#, we can clearly identify the diffusive modeD1(k)
which is well separated from all the rest of modes ove
wide wave-vector range. This mode converges rapidly to
genuine value with an increasing order of the approximati
so that it is already reproduced quantitatively at small wa
numbers within the two-order description. As far as the fiv
order description is used, we can talk about the quantita
reproducing at intermediate and great wave vectors as w
The appearance of theD1(k) mode is caused by the diffusiv

re
e-
-

FIG. 2. Transverse~a! and longitudinal~b! components of the
correlation time for the Stockmayer fluid. The results in one-, tw
three-, and four-order approximations are plotted by long-dash
long-short-dashed, short-dashed, and solid curves, respectively
exact values are presented as circles.

FIG. 3. Generalized dipolar mode spectra of the Stockma
fluid: transverse@~a! and ~b!# and longitudinal@~c! and ~d!# modes
in four- @~a! and~c!# and five-@~b! and~d!# order descriptions. The
pure diffusive modes and real and imaginary parts of propaga
modes are marked by the symbolsD, P, andW, respectively. For
the purpose of comparison the results in two- and three-mode
proaches are shown in~a! and ~c! and ~b! and ~d! by the thinnest
curves.
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mechanism of dielectric relaxation in polar systems, and o
this mechanism is considered in the well-known Deb
theory. Neglecting the dipole-dipole interactions, as do
originally by Debye, it can been found that in the infinit
wavelength limit limk→0D1(k)52DR , whereDR is the ro-
tational diffusion coefficient. Applying the extended hydr
dynamic approach, Bagchi and Chandra improved this re
and obtainedD1(k)5(2DR1DTk2)@11(N/V)c(k)#, where
DT is the translational diffusion coefficient, andc(k) denotes
a component of the spherical harmonic expansion of the t
particle direct correlation function@6#. The last result is valid
not only for dilute systems but also for dense gases and
uids; however, it can be used at small wave vectors ex
sively. Our scheme provides the possibility to defineD1(k)
in terms of the Kirkwood factor and its higher-order comp
nents at arbitrary values of the wave number.

It is worth remarking that the diffusive mode, as the mo
with the lowest real part, makes the main contribution to
TCFs and dielectric quantities in an almost whole domain
k space, especially at small wave vectors. That is why
single-relaxation-time approximation for dipole-mome
fluctuations,;e2D1(k) t, which is used in the Debye theory
can be applied here. This approximation works well in t
overdamped limit of great timest and small frequenciesv,
where the inertial motions of the liquid molecules are n
important. To describe the region of intermediate valuest
and v properly, it is necessary to consider higher-ord
modes. The next two propagating modesP2(k)6 iW2(k)
arise additionally, beginning from the three-order approa
The three- and higher-order descriptions explicitly inclu
the free-motion effects in terms ofg2(k), and correlations
due to interactions via the torque-torque^( i , jK i–K j& and
force-force ^( i , j f i–f j& ~at kÞ0) fluctuations in terms of
g4(k) @see Eq.~31!#. Within the four-order approximation
the secondary diffusive modeD3(k) appears at smallk. It
separates into two new propagating modesP3(k)6 iW3(k)
when the order of the approximation is increased to fi
whereas the previous two propagating modes are moder
corrected. The four- and five-mode descriptions consi
higher-order kinetic processes which are important at v
small times~very great frequencies! and great wave-vecto
values. The transverse propagating modes describe an o
lation behavior of time polarization fluctuations. However
is hard to observe these oscillations because they damp
nificantly during their time periods, i.e.,P2(k);W2(k) and
P3(k);W3(k).

For the longitudinal fluctuations@subsets~c! and ~d! of
Fig. 3#, the pattern is quite different. Here we can eas
distinguish two propagating modesP1(k)6 iW1(k). Con-
trary to the case of transverse fluctuations, these modes
hibit a quasiparticle feature at not very great wave numb
whereP1(k)!W1(k). They should be associated with dip
larons@14# ~analogous to the well-known plasmons in Co
lomb systems!, whereW1(k) andP1(k) define the frequency
and damping of the dipolaron excitations, respectively.
one can see from the figures, the dipolaron mode has alre
been predicted within the two-order description which
cludes the correct inertial short time behavior of polarizat
fluctuations. If dipole-dipole interactions are neglected,
dipolaron frequency can be defined approximately@6# as
limk→0W1(k)54pNu2/VJ'35.2ts

21 that is very close to
ly
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the values 27.8ts
21 , 33.0ts

21 , 35.5ts
21 , and 31.7ts

21 ob-
tained by us atS5 2, 3, 4, and 5, respectively. The secon
ary oscillation process is reproduced by the next t
complex-conjugated modesP2(k)6 iW2(k) at S54. Finally,
in the five-order description, the pure diffusive modeD3(k)
appears additionally.

The dipolarons are expected to occur for systems w
large permittivities where a rapid reorientation of dipol
takes place. They were found for the first time by Pollo
and Alder @14#, investigating Stockmayer fluids in a som
what different thermodynamic point and with smaller valu
of the particle’s dipole moment than in the present wo
Analysis of the dipolaron oscillations in Ref.@14# was lim-
ited, in fact, by small values of the wave vector. The dip
laron frequency was estimated as that providing the ma
mum of the imaginary part of 1/«L(k,v). Computations have
shown, however, that such an estimation gives correct va
of the dipolaron frequency for small wave numbers on
@28#.

In our approach, the inequalitiesP1(k)&W1(k), P2(k),
and D3(k) can be considered as a condition of existing t
dipolaron oscillations. This condition is satisfied as far
k* [ksLJ&4. With increasing wave-vector values the diffu
sive processes begin to dominate, especially atk* ;7, where
D3(k) is much less than all the other modes. This feature
visible in all the orders of the approximations as well. F
example, in the four-order description the propagating mo
P2(k)6 iW2(k) are separated into two pure diffusive mod
D2(k) and D3(k) within a small region neark* ;7, where
the longitudinal componentgL(k) of the Kirkwood factor
has the sharp maximum~see Fig. 1!.

In view of the behavior of dipolar modes, the whole r
gion of wave vectors can be split into several characteri
intervals. In the first one the lowest-lying dipolar modes a
well separated from the rest of others, and this separatio
observed as long ask* &2 ~the so-called extended hydrody
namic regime!. In this interval the Debye-like theory can b
applied to transverse dipole-moment fluctuations, wher
the longitudinal component of the dielectric permittivity ca
be predicted by two complex-conjugated dipolaron mod
In the second range of intermediate wave numbers, 2&k*
&12, all the modes are mixed between themselves in a v
complicated manner~especially in the case of longitudina
fluctuations!. To describe the dynamical behavior of diele
tric quantities in this range, it is necessary to involve ad
tional higher-order modes, except for the subinterval 6&k*
&8, where the longitudinal diffusive mode dominates ov
all the rest of modes, similar to the behavior of transve
modes in the extended hydrodynamic regime. Finally, in
so-called free-motion regime,k* &12, all the modes tend to
their own linear asymptotes to reproduce the Gaussian t
shapegG(k,t) of dipole-moment fluctuations.

Examples of the normalized, time correlation functio
FL,T(k,t)[gL,T(k,t)/gL,T(k), obtained in two-, three-, and
five-mode descriptions, are presented and compared with
MD data @28# in Fig. 4. As we can see from the figure, th
transverse componentFT(k,t) exhibits an almost pure
damped feature over a wide range of wave numbers. In
case of longitudinal fluctuations this is valid for intermedia
and great wave-vector values only. At small wave vecto
the longitudinal dipole-moment fluctuations are described



-
n

th
de
he

in

e
e

x

om

o-

o
h
tiv
ire
e

o
x
d
g
r

po
e

d as
iv-
ur
d in
ar-
rk-
be
ter
ng
ode
ve-
on

ory
lar
cy

al
ss
ent

he
e

d
o

tric

s.
de-
olid

6674 57I. P. OMELYAN, I. M. MRYGLOD, AND M. V. TOKARCHUK
strong dipolaron oscillations with a slight damping. Such
behavior ofFL,T(k,t) is completely in line with the predic
tions of the generalized dipolar modes approach. The tra
verse TCF’s are reproduced satisfactorily even within
three-mode description. The longitudinal oscillations are
scribed in this case as well, but only qualitatively. At t
same time, the approximated and genuine TCF’s begin to
indistinguishable when the order of the description is
creased to five.

A pattern similar to that presented for TCF’s is observ
for the wave-vector- and frequency-dependent dielectric p
mittivity «L,T(k,v)5«L,T8 (k,v)2 i«L,T9 (k,v). Our calcula-
tions, carried out in one-, two-, three- and five-order appro
mations for the longitudinal«L(k,v) and transverse«T(k,v)
components are shown in Figs. 5 and 6, respectively, in c
parison with the MD data of Ref.@28#. We note that in the
infinite-wavelength limit limk→0«L,T(k,v)5«(v). It can
easily be seen that within the Debye-like theory (S51) the
dielectric permittivity can be well reproduced in the hydr
dynamic limit ~low frequencies and wave numbers!. With
increasing wave-vector and frequency values this the
fails, especially in the case of longitudinal fluctuations. In t
three-mode approximation we can talk about a qualita
description. Finally, within the five-order approach the ent
frequency dependence of the dielectric permittivity is d
scribed quantitatively at arbitrary wave vectors~the devia-
tions from MD data do not exceed a few percent!. This
merely means that the five variables constitute an alm
complete set of slow quantities, and the Markovian appro
mation begins to be almost exact. Therefore, the exten
continued fractions~13! converge rapidly with an increasin
order of the approximation, and the hypothesis of an abb
viated description is in an excellent accord.

IV. CONCLUDING REMARKS

It has been established that dielectric relaxation in a di
lar fluid can be successfully studied within the generaliz

FIG. 4. The normalized time autocorrelation functions of t
dipole-moment fluctuations for the Stockmayer fluid at some fix
values of wave number, wherekmin52p/ A3 V50.927/sLJ . The MD
data for longitudinal and transverse components are shown
circles and squares. The results of two-, three-, and five-mode
scriptions are plotted by the corresponding long-dashed, sh
dashed, and solid curves, respectively.
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mode method. The proposed approach can be considere
an extension of the three-variable theory of Madden and K
elson @3# to arbitrary numbers of dynamical variables. O
scheme for the computation of dipolar modes is presente
a form that is very convenient to actual applications. In p
ticular, all necessary input quantities are, in fact, static Ki
wood factors of different orders. The static factors can
determined by either equilibrium theories or direct compu
simulations. This has allowed us both to avoid any fitti
procedures and to evaluate the generalized dipolar-m
spectra of a Stockmayer fluid over the whole scale of wa
lengths up to the five-order description. It has been shown
the basis of direct calculations that the five-variable the
enables one to define the dielectric permittivity of a dipo
fluid quantitatively at arbitrary wave-vector and frequen
values.

In view of the importance of the problem of dynamic
polarization in polar fluids, we would also like to discu
briefly the question of how the theoretical scheme we pres

d

as
e-
rt-

FIG. 5. The frequency dependence of the longitudinal dielec
permittivity for the Stockmayer fluid at infinite@~a! and ~b!# and
finite @~c!–~h!# wavelengths. The MD data are shown by circle
The results obtained within one-, two-, three-, and five-mode
scriptions are plotted by long-short-, long-, short-dashed, and s
curves, respectively.
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is related to existing hydrodynamic approaches. As m
tioned in Sec. I, the microscopic operators of number den
n̂(r ,Q)5( i 51

N d(r2r i)d(Q2Qi), spatial momentum den

sity P̂(r ,Q)5( i 51
N mvid(r2r i)d(Q2Qi), and angular mo-

mentum densityL̂ (r ,Q)5( i 51
N Jwid(r2r i)d(Q2Qi) are

involved within the widely cited approach of Bagchi an
Chandra@6#. In this theory, fluctuations of the total energ
density ê(r ,Q)5( i 51

N eid(r2r i)d(Q2Qi), where ei

5 1
2 (mvi

21Jwi
21( j ( j Þ i )

N w i j ), are not taken into account du
to the complexities of the hydrodynamic equations. The v
tor Qi characterizes orientations of moleculei and, in the
case of rigid nonpolarizable molecules, it can be associa
with the unit vector directed along the particle’s dipole m
ment, i.e.,Qi5ui /u. Then the dipole-moment fluctuation
can be reproduced on the basis of number-density corr
tions, using the relationM̂ (r ,t)5u^Q n̂(r ,Q,t)&Q , where
the averaging is performed over orientations. Despite the
that such an approach allows one, in principle, to desc
the processes of dielectric relaxation in a dipolar fluid a
connect them directly with thermodynamic and hydrod

FIG. 6. The frequency dependence of the transverse diele
permittivity for the Stockmayer fluid at finite wavelengths. The n
tations are the same as for Fig. 5.
-
ty

-

ed
-

la-

ct
e

d
-

namic properties, it is rather sophisticated and impractica
applications. The main results are yet to be obtained.

A somewhat different approach for describing the gen
alized hydrodynamics of dipolar systems was recently p
posed in Ref.@40#. The main idea of this approach consis
of the following. When the vectorM (k) of the dipole density
is included into the consideration as an orientational varia
it is no longer necessary to deal with the orientational dep

denceQ̂(r ,Q)[$n̂,P̂,ê,L̂% of hydrodynamic variables. Then

the basic set can be cast in the usual molecular formQ̂(k)

5*V^Q̂(r ,Q)&Qe2 ik–rdr[$n(k), P(k), e(k),L (k)%, where
n(k)5( i 51

N e2 ik–r i, P(k)5( i 51
N mvie

2 ik–r i, e(k)
5( i 51

N ^ei&Qi
e2 ik–r i, andL (k)5( i 51

N Jwie
2 ik–r i. The advan-

tage of such a representation lies in the evident simplifica
of the corresponding hydrodynamic equations. Moreov
owing to the conservation laws of the total number of p
ticles, momenta and energy, the basic setQ(k) can be con-
sidered as a set of slow variables. For instance, time der
tives of n(k), P(k), and e(k) vanish, whenk→0. Finally,
for isotropic and spatially homogeneous systems, the dip
density M (k) does not correlate at equilibrium with bas
hydrodynamic quantities in the static limit, i.e
^M (k)–Q(k)&50.

For this reason, the dipole-density and hydrodynam
fluctuations can be considered separately from each othe
has been done in the present paper, when investiga
dipole-moment fluctuations. We call the generalized coll
tive modes related to these fluctuations dipolar modes
order to distinguish them from the hydrodynamic mod
concerning fluctuations of hydrodynamic quantities. At t
same time, the generalized hydrodynamic modes of a dip
system can be studied within the same scheme as in the
of simple fluids@35–37#. It is also worth remarking that cor
relations between the dipole-moment density and hydro
namic quantities are not completely independent. Being
sent at the basic level, however, they appear at higher or
of the description. This leads to additional non-Markovi
effects when working within the dipole-density formalism
Nevertheless, these effects are taken into account in an
fective way, including, besides the basis quantityM (k), its
higher-order components~3! as well. The hydrodynamic cor
relations are included in the same way too. For example,
fluctuations ofLM (k) @see Eq.~31!# can be expressed in
terms of the correlations of spatial and angular mome
densities. Therefore, within the extended dipole-density f
malism, the processes of dielectric relaxation are conne
implicitly with hydrodynamic properties via higher-orde
static Kirkwood factors. The investigation of generalized h
drodynamic modes of a Stockmayer fluid, as well as an
plication of the proposed theory to more complicated int
action site models of polar fluids, will be presented in
separate publication.
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